Dynax

DF1G0015-08N

RF GaN POWER AMPLIFIER for Wireless Infrastructure

DF1G0015-08N is a 7 W RF GaN HEMT Transistor with first generation RF GaN technology from Dynax, which is ideal for 20 MHz to 1500 MHz ultra wideband applications. It features fully input and output matching.

Applications

- Wideband or Narrowband Amplifiers
- Test Instrumentations

Typical RF Performance¹

- Frequency: 20 1500 MHz
- Saturation Output Power: 7 W
- Saturation Drain Efficiency: 56% @650MHz
- Power Gain: 18 dB @650MHz

Note:

¹ Typical Performance in Dynax DF1G0015-08N Class AB Demo with the device soldered onto the heatsink, test condition: $V_{DD} = 28$ V, $I_{DQ} = 30$ mA, Input signal Pulsed CW, Pulse Width = 100 µs, Duty Cycle = 10 %.

20 – 1500 MHz, 7 W, RF GaN POWER AMPLIFIER

Package Type: LGA 4×4mm

Table 1. Maximum Ratings

Parameter	Symbol	Rating	Unit
Drain-Source Voltage	Vdss	150	V
Gate-Source Voltage	V _{GS}	-10 ~ +2	V
Operating Voltage	Vdd	0 ~ +55	V
Maximum Forward Gate Current	Igmax	1.0	mA
Storage Temperature Range	Tstg	-65 ~ +150	°C
Operating Junction Temperature	TJ	225	°C
Absolute Maximum Channel Temperature ²	Тмах	275	°C

² Functional operation above 225 $^{\circ}$ C has not been characterized and is not implied. Operation at T_{MAX} (275 $^{\circ}$ C) reduces median time to failure by an order of magnitude; Operation beyond T_{MAX} could cause permanent damage.

Table 2. Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance at Average Power by Infrared Measurement,			
Active Die Surface-to-Case	$R_{thjc(IR)}$	TBD	°C/W
$T_{base-plate} = 85 \degree C, P_D = TBD$			
Thermal Resistance at Average Power by Finite Element			
Analysis, Junction-to-Case	$R_{thjc(FEA)}$	TBD	°C/W
Tbase-plate = 85° C, PD = TBD			

Table 3. Ordering Information

Device	Package Type	Marking
DF1G0015-08N	LGA 4×4mm	LL08A

Table 4. Bias Sequences

Bias-up Sequence	Bias-down Sequence
Set V _{GS} to -5 V	Turn off RF power
Turn on VDs to 28 V	Reduce V _{DS} down to 0 V
Increase V _{GS} until I _{DS} current is attained	Turn off V _{GS}
Apply RF input power	

Table 5. Electrical Characteristics ($IA = 25$ C unless otherwise noted)						
Characteristic	Symbol Min.		Тур.	Max.	Unit	
DC Characteristics (measured on wafer prior to packaging)						
Drain-Source Leakage Current	Idss		-	1.0	mA	
$(V_{GS} = -10 \text{ V}, V_{DS} = 150 \text{ V})$						
Drain-Source Breakdown Voltage	V.				V	
$(V_{GS} = -10 \text{ V}, \text{ I}_{D} = 1.0 \text{ mA})$	V (BR)DSS	150	-	-	v	
Gate Threshold Voltage	Variation		20	1.0	V	
$(V_{DS} = 28 \text{ V}, I_D = 1.0 \text{ mA})$	\mathbf{V} GS(th)	-4.0	-3.2	-1.0	v	
Gate Quiescent Voltage	V		2.0			
$(V_{DD} = 28 \text{ V}, \text{ ID} = 30 \text{ mA})$	\mathbf{V} GS(Q)	-	-3.0	-	V	
RF Characteristics						
Typical Performance ³						
Saturation Output Power	Psat	-	7	-	W	
Saturation Drain Efficiency	η_{D}	-	56	-	%	
Power Gain	Gp	-	18	-	dB	
Gain Flatness	GF	_	3	_	dB	

Table 5. Electrical Characteristics (TA = 25 $^{\circ}$ C unless otherwise noted)

³ Typical Performance in Dynax DF1G0015-08N Class AB Demo with the device soldered onto the heatsink, test condition: $V_{DD} = 28 \text{ V}$,

 I_{DQ} = 30 mA, f = 20 – 1500 MHz, Input signal Pulsed CW, Pulse Width = 100 µs, Duty Cycle = 10 %.

Figure 2. Median Lifetime vs. Channel Temperature

Package Dimensions

Package Type: LGA 4×4mm

MILLIMETER			
SYMBOL	MIN	NOR	MAX
Α	0.82	0.90	0.98
A2	0.27	0.30	0.33
A3	0.55	0.60	0.65
D	3.90	4.00	4.10
E	3.90	4.00	4.10
е	0.65 BSC		
aaa	0.10		
ccc	0.05		

Product Documentation and Software

Refer to the following resources to aid your design process.

Application Notes

• AN_02: User Guide for GaN HEMT Transistor

Document Revision History

The following table summarizes revisions to this document.

Status	Revision	Date	Description
Objective datasheet	V01	08/23/2021	Initial version.
Objective datasheet	V02	11/04/2021	Update typical RF performance and POD
Objective datasheet	V 02		drawing.

Abbreviations

Acronym	Description		
CW	Continuous Waveform		
GaN	Gallium Nitride		
HEMT	High Electron Mobility Transistor		
MTTF	Median Time To Failure		
VSWR	Voltage Standing-Wave Ratio		

Disclaimer

Specifications are subject to change without notice. Dynax makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters that may be provided in Dynax data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters should be validated by customer's technical experts for each application. Dynax does not convey any license under its patent rights nor the rights of others. Dynax products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Dynax product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Dynax and its suppliers accept no liability for inclusion and/or use of Dynax products in such equipment or applications and therefore such inclusion and/or use are at the customer's own risk.

Contact Information

For sales or technical support: Home Page: <u>www.dynax-semi.com</u> Tel: +86-512-36886888 Email: <u>sales@dynax-semi.com</u> Zip Code: 215300 Company Address: No.18 Chenfeng Road, Kunshan, Jiangsu Province, China