Dynax

DF1G0010-16N

RF GaN POWER AMPLIFIER for Wireless Infrastructure

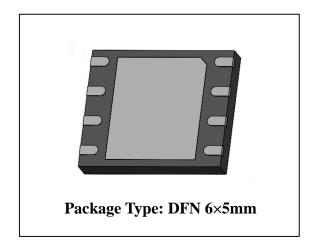
20 – 1000 MHz, 12.5 W, RF GaN POWER AMPLIFIER

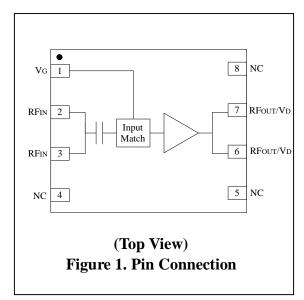
DF1G0010-16N is a 12.5 W RF GaN HEMT Transistor with first generation RF GaN technology from Dynax, which is ideal for 20 MHz to 1000 MHz ultra wideband applications. It features fully input matching.

Applications

- Wideband or Narrowband Amplifiers
- Test Instrumentations

Typical RF Performance 1


• Frequency: 20 – 1000 MHz


• Saturation Output Power: 12.5 W

• Saturation Drain Efficiency: 66% @650MHz

Small Signal Gain: 18 dB @650MHz

Note:

 $^{^1}$ Typical Performance in Dynax DF1G0010-16N Class AB Demo with the device soldered onto the heatsink, test condition: $V_{DD}=28\ V,\,I_{DQ}=90\ mA,$ Input signal Pulsed CW, Pulse Width = 100 $\mu s,\,Duty\,Cycle=10\ \%.$

OBJECTIVE

Table 1. Maximum Ratings

Parameter	Symbol	Rating	Unit
Drain-Source Voltage	V_{DSS}	150	V
Gate-Source Voltage	V_{GS}	-10 ~ +2	V
Operating Voltage	$V_{ m DD}$	0 ~ +55	V
Maximum Forward Gate Current	Igmax	3.2	mA
Storage Temperature Range	Tstg	-65 ~ +150	${\mathbb C}$
Operating Junction Temperature	Tı	225	${\mathbb C}$
Absolute Maximum Channel Temperature ²	Tmax	275	${\mathbb C}$

² Functional operation above 225°C has not been characterized and is not implied. Operation at T_{MAX} (275°C) reduces median time to failure by an order of magnitude; Operation beyond T_{MAX} could cause permanent damage.

Table 2. Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance at Average Power by Infrared Measurement,			
Active Die Surface-to-Case	$R_{\text{thjc}(\text{IR})}$	TBD	$^{\circ}$ C/W
Tbase-plate = 85° C, PD = TBD			
Thermal Resistance at Average Power by Finite Element			
Analysis, Junction-to-Case	$R_{\text{thjc(FEA)}}$	TBD	$^{\circ}$ C/W
Tbase-plate = 85° C, PD = TBD			

Table 3. Ordering Information

Device	Package Type	Marking
DF1G0010-16N	DFN 6×5mm	DU16A

Table 4. Bias Sequences

Bias-up Sequence	Bias-down Sequence	
Set V _{GS} to -5 V	Turn off RF power	
Turn on V _{DS} to 28 V	Reduce V _{DS} down to 0 V	
Increase V _{GS} until I _{DS} current is attained	Turn off V _G s	
Apply RF input power		

Copyright © 2021 Dynax Semiconductor, Inc. Datasheet: Rev. 02, 11/04/2021

OBJECTIVE

Table 5. Electrical Characteristics (TA = 25 °C unless otherwise noted)

Characteristic	Symbol	Min.	Typ.	Max.	Unit	
DC Characteristics (measured on wafer prior to p	DC Characteristics (measured on wafer prior to packaging)					
Drain-Source Leakage Current	Idss			3.2	mΛ	
$(V_{GS} = -10 \text{ V}, V_{DS} = 150 \text{ V})$	IDSS	-	-	3.2	mA	
Drain-Source Breakdown Voltage	$V_{\left(BR\right) DSS}$	150		-	V	
$(V_{GS} = -10 \text{ V}, I_D = 3.2 \text{ mA})$	V (BR)DSS	130	-		V	
Gate Threshold Voltage	$V_{GS(th)}$	-4.0	-3.2	-1.0	V	
$(V_{DS} = 28 \text{ V}, I_D = 3.2 \text{ mA})$	V GS(th)	-4.0	-3.2	-1.0	V	
Gate Quiescent Voltage	$V_{GS(Q)}$		-3.0	-		
$(V_{DD} = 28 \text{ V}, I_D = 90 \text{ mA})$					V	
RF Characteristics						
Typical Performance ³						
Saturation Output Power	Psat	-	12.5	-	W	
Saturation Drain Efficiency	η D	_	66	_	%	
Power Gain	G_{P}	_	18	_	dB	
Gain Flatness	G_{F}	_	3	_	dB	

 $^{^3}$ Typical Performance in Dynax DF1G0010-16N Class AB Demo with the device soldered onto the heatsink, test condition: $V_{DD}=28$ V, $I_{DQ}=90$ mA, f=20-1000 MHz, Input signal Pulsed CW, Pulse Width = 100 μs , Duty Cycle = 10 %.

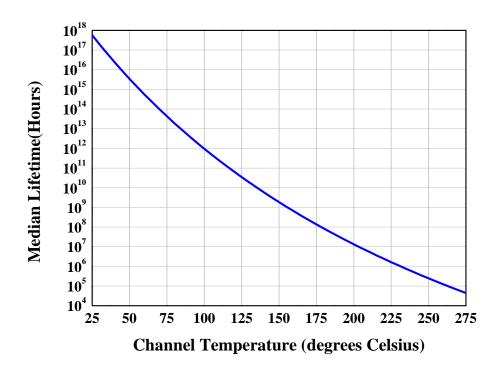
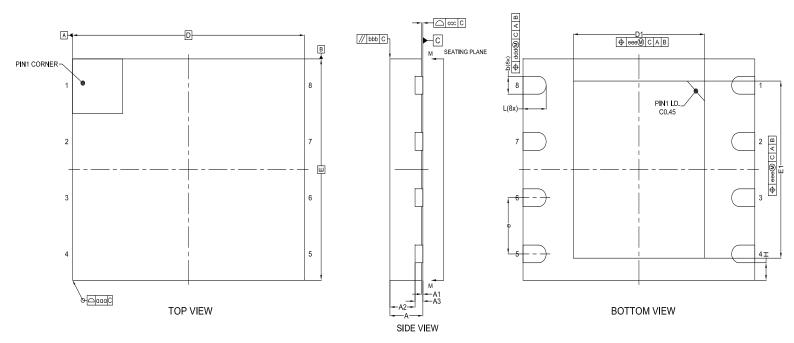



Figure 2. Median Lifetime vs. Channel Temperature

Package Dimensions

Package Type: DFN 6×5mm

DESCRIPTION		SYMBOL	MILLIMETER		
			MIN	NOM	MAX
TOTAL THICKNESS		А	0.80	0.85	0.90
STAND OFF		A1	0.00		0.05
MOLD THICKNESS		A2	0.60	0.65	0.70
L/F THICKNESS		А3	0.203 REF		
PODV SIZE	Х	D	5.90	6.00	6.10
BODY SIZE	Υ	E	4.90	5.00	5.10
LEAD PITCH		е	1.27 BSC		
LEAD WIDTH		b	0.35	0.40	0.45
LEAD LENGTH		L	0.55	0.60	0.65
EP SIZE	Х	D1	3.35	3.40	3.45
EP SIZE	Υ	E1	3.95	4.00	4.05
LEAD EDGD TO PKG EDGE		Н	0.395 BSC		
TOLERANCE OF FORM AND POSITION					
GEOMETRIC TOLERANCE		aaa	0.10		
MOLD FLATNESS		bbb	0.10		
LEAD COPLANARITY		ссс	0.08		
LEAD POSITION OFFSET		ddd	0.10		
EXPOSED PAD OFFSET		eee		0.10	

Copyright © 2021 Dynax Semiconductor, Inc. Datasheet: Rev. 02, 11/04/2021

Product Documentation and Software

Refer to the following resources to aid your design process.

Application Notes

AN_02: User Guide for GaN HEMT Transistor

Document Revision History

The following table summarizes revisions to this document.

Status	Revision	Date	Description
Objective datasheet	V01	08/23/2021	Initial version.
	1,00	11/04/2021	Update typical RF performance and POD
Objective datasheet	V02	11/04/2021	drawing.

Abbreviations

Acronym	Description		
CW	Continuous Waveform		
GaN	Gallium Nitride		
HEMT	High Electron Mobility Transistor		
MTTF	Median Time To Failure		
VSWR	Voltage Standing-Wave Ratio		

Copyright © 2021 Dynax Semiconductor, Inc. Disclaimer: Subject to change without notice Datasheet: Rev. 02, 11/04/2021 6/7 **OBJECTIVE**

Disclaimer

Specifications are subject to change without notice. Dynax makes no warranty, representation or guarantee

regarding the suitability of its products for any particular purpose. "Typical" parameters that may be provided

in Dynax data sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters should be validated by customer's technical experts for each

application. Dynax does not convey any license under its patent rights nor the rights of others. Dynax

products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-

critical systems or equipment, nor in applications where failure or malfunction of a Dynax product can

reasonably be expected to result in personal injury, death or severe property or environmental damage. Dynax

and its suppliers accept no liability for inclusion and/or use of Dynax products in such equipment or

applications and therefore such inclusion and/or use are at the customer's own risk.

Contact Information

For sales or technical support:

Home Page: www.dynax-semi.com

Tel: +86-512-36886888

Email: sales@dynax-semi.com

Zip Code: 215300

Company Address: No.18 Chenfeng Road, Kunshan, Jiangsu Province, China

Copyright © 2021 Dynax Semiconductor, Inc. Disclaimer: Subject to change without notice 7/7

Datasheet: Rev. 02, 11/04/2021